Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High-resolution records from past interglacial climates help constrain future responses to global warming, yet are rare. This dataset contains seasonally-resolved climate records from subarctic-Canada using micron-scale measurements of oxygen isotopes (δ18O) in speleothems with apparent annual growth bands from three interglacial periods – Marine Isotope Stages 11 (409-376 ka), 9 (336-305 ka) and MIS 5e (123-118 ka). Our study highlights the potential for high-latitude speleothems to yield detailed isotopic records of Northern Hemisphere interglacial climates beyond the reach of Greenland ice cores and offers a framework for interpreting them. Table S1 contains the Uranium-Thorium dates for six speleothems, or more specifically, flowstones, from a cave in Northwest Territories (NWT), Canada. It also contains constructed age models for each sample. Then, we applied a two-tiered methodological approach to reconstruct past subarctic climate. First, we produce an ultra-high-resolution δ18O record that, although not continuous, spans thousands of years for portions of these interglacials. This record was created using Secondary Ion Mass Spectrometry (SIMS) to measure δ18O approximately every 35-micrometer (µm) down each sample’s growth axis. This data is shown in Table S2. Second, we used Confocal Laser Fluorescence Microscopy (CLFM) to identify several fluorescent annual bands in each speleothem, which we then targeted for additional SIMS measurements. This data is shown in Table S3. Though these subarctic speleothems are small in size (most are less than 10 centimeter (cm) in length), the application of both CLFM and SIMS on these samples demonstrate their potential for providing ultra-high-resolution records of high-latitude Northern Hemisphere terrestrial climate outside of Greenland and provide insights into interpretive frameworks for future cold-region speleothem δ18O records.more » « less
-
Abstract High‐resolution records from past interglacial climates help constrain future responses to global warming, yet are rare. Here, we produce seasonally resolved climate records from subarctic‐Canada using micron‐scale measurements of oxygen isotopes (δ18O) in speleothems with apparent annual growth bands from three interglacial periods—Marine Isotope Stages (MIS) 11, 9, and 5e. We find 3‰ lower δ18O values during MIS 11 than MIS 5e, despite MIS 11 likely being warmer. We explore controls on high‐latitude speleothem δ18O and suggest low MIS 11 δ18O values reflect greater contribution of cold‐season precipitation to dripwater from longer annual ground thaw durations. Other potential influences include changes in precipitation source and/or increased fraction of cold‐season precipitation from diminished sea ice in MIS 11. Our study highlights the potential for high‐latitude speleothems to yield detailed isotopic records of Northern Hemisphere interglacial climates beyond the reach of Greenland ice cores and offers a framework for interpreting them.more » « less
-
Malik, Harmit S. (Ed.)Comparative genomics has enabled the identification of genes that potentially evolved de novo from non-coding sequences. Many such genes are expressed in male reproductive tissues, but their functions remain poorly understood. To address this, we conducted a functional genetic screen of over 40 putative de novo genes with testis-enriched expression in Drosophila melanogaster and identified one gene, atlas , required for male fertility. Detailed genetic and cytological analyses showed that atlas is required for proper chromatin condensation during the final stages of spermatogenesis. Atlas protein is expressed in spermatid nuclei and facilitates the transition from histone- to protamine-based chromatin packaging. Complementary evolutionary analyses revealed the complex evolutionary history of atlas . The protein-coding portion of the gene likely arose at the base of the Drosophila genus on the X chromosome but was unlikely to be essential, as it was then lost in several independent lineages. Within the last ~15 million years, however, the gene moved to an autosome, where it fused with a conserved non-coding RNA and evolved a non-redundant role in male fertility. Altogether, this study provides insight into the integration of novel genes into biological processes, the links between genomic innovation and functional evolution, and the genetic control of a fundamental developmental process, gametogenesis.more » « less
An official website of the United States government
